Diurnal Thermal Tides in a Non-synchronized Hot Jupiter
نویسندگان
چکیده
We perform a linear analysis to investigate the dynamical response of a nonsynchronized hot Jupiter to stellar irradiation. In this work, we consider the diurnal Fourier harmonic of the stellar irradiation acting at the top of a radiative layer of a hot Jupiter with no clouds and winds. In the absence of the Coriolis force, the diurnal thermal forcing can excite internal waves propagating into the planet’s interior when the thermal forcing period is longer than the sound crossing time of the planet’s surface. When the Coriolis effect is taken into consideration, the latitude-dependent stellar heating can excite weak internal waves (g modes) and/or strong baroclinic Rossby waves (buoyant r modes) depending on the asynchrony of the planet. When the planet spins faster than its orbital motion (i.e. retrograde thermal forcing), these waves carry negative angular momentum and are damped by radiative loss as they propagate downwards from the upper layer of the radiative zone. As a result, angular momentum is transferred from the lower layer of the radiative zone to the upper layer and generates a vertical shear. We estimate the resulting internal torques for different rotation periods based on the parameters of HD 209458b.
منابع مشابه
Thermal Tides in Short Period Exoplanets
Time-dependent insolation in a planetary atmosphere induces a mass quadrupole upon which the stellar tidal acceleration can exert a force. This “thermal tide” force can give rise to secular torques on the planet and orbit as well as radial forces causing eccentricity evolution. We apply this idea to the close-in gas giant exoplanets (“hot Jupiters”). The response of radiative atmospheres is com...
متن کاملElliptical instability in hot Jupiter systems
Several studies have already considered the influence of tides on the evolution of systems composed of a star and a close-in companion to tentatively explain different observations such as the spin-up of some stars with hot Jupiters, the radius anomaly of short orbital period planets and the synchronization or quasi-synchronization of the stellar spin in some extreme cases. However, the nature ...
متن کاملOn the Inference of Thermal Inversions in Hot Jupiter Atmospheres
Several studies in the recent past have inferred the existence of thermal inversions in some transiting hot Jupiter atmospheres. Given the limited data available, the inference of a thermal inversion depends critically on the chemical composition assumed for the atmosphere. In this study, we explore the degeneracies between thermal inversions and molecular abundances in four highly irradiated h...
متن کاملObservations of atmospheric tides on Mars at the season and latitude of the Phoenix atmospheric entry
[1] We report on the atmospheric structure derived from atmospheric entry of NASA’s Phoenix Mars probe using Phoenix Atmospheric Structure Experiment (ASE) data complemented by Mars Cl imate Sounder (MCS) temperature‐pressure profiles. Oscillations in temperature, caused by thermal tides, have vertical wavelengths of tens of kilometres. Their amplitudes are much larger in individual profiles th...
متن کاملConcerning thermal tides on hot Jupiters
By analogy with a mechanism proposed by Gold and Soter to explain the retrograde rotation of Venus, Arras and Socrates suggest that thermal tides may excite hot jovian exoplanets into nonsynchronous rotation, and perhaps also noncircular orbits. It is shown here that because of the absence of a solid surface above the convective core of a jovian planet, the coupling of the gravitational and the...
متن کامل